InteGreat Worksheet

1. For each problem, approximate the area under the given function using the specified number of rectangles/trapezoids.

$\#$	Function	Interval	\# of Partiti on	Left Sum	Right Sum	Midp oint Sum	Trape zoid	Aver age Sum
1$f(x)=\sqrt{4-x^{2}}$ Type "sqrt" for $\sqrt{ }$	$[-2,2]$	8						
2	$f(x)=2^{x}$	$[0,1]$	5					
3	$f(x)=\sin (x)$	$[0,3.14]$	8					

a) Using the applet, for each function, which method gives you the highest and lowest sum? Explain why?
b) Calculate the area under function $\# 1$ by hand. From part a, which method gave you the closest area? Explain your answer.
c) Calculate the area of the rest of the functions by hand using left and right sum techniques. Check your answer with the table above. (Hint: Use partition size for your reference)
2. Find the area under function $f(x)=2 x^{2}-5 x+7$ between $x=-2$ and $x=5$. Complete the table below using InteGreat.

Numbe rof Partitio ns	Partitio n Size	Actual Area $=\ldots 85.1667$					Method with least Error. Write Left, Right, Midpoint, Trapezoid, or Average
		Area Approximation					
		Left Sum	Right Sum	Midpo int Sum	Trapez oids	Avera ge Sum	
1							
5							
15							
25							
50							

